Sandpiles, Spanning Trees, and Plane Duality
نویسندگان
چکیده
Let G be a connected, loopless multigraph. The sandpile group of G is a finite abelian group associated to G whose order is equal to the number of spanning trees in G. Holroyd et al. used a dynamical process on graphs called rotor-routing to define a simply transitive action of the sandpile group of G on its set of spanning trees. Their definition depends on two pieces of auxiliary data: a choice of a ribbon graph structure on G, and a choice of a root vertex. Chan, Church, and Grochow showed that if G is a planar ribbon graph, it has a canonical rotor-routing action associated to it; i.e., the rotor-routing action is actually independent of the choice of root vertex. It is well known that the spanning trees of a planar graph G are in canonical bijection with those of its planar dual G∗, and furthermore that the sandpile groups of G and G∗ are isomorphic. Thus, one can ask: are the two rotor-routing actions, of the sandpile group of G on its spanning trees, and of the sandpile group of G∗ on its spanning trees, compatible under plane duality? In this paper, we give an affirmative answer to this question, which had been conjectured by Baker. Required Publisher's Statement Original version is available from the publisher at: http://epubs.siam.org/doi/abs/10.1137/140982015 Authors Melody Chan, Darren B. Glass, Matthew Macauley, David Perkinson, Caryn Werner, and Qiaoyu Yang This article is available at The Cupola: Scholarship at Gettysburg College: http://cupola.gettysburg.edu/mathfac/38 SIAM J. DISCRETE MATH. c © 2015 Society for Industrial and Applied Mathematics Vol. 29, No. 1, pp. 461–471 SANDPILES, SPANNING TREES, AND PLANE DUALITY∗ MELODY CHAN† , DARREN GLASS‡ , MATTHEW MACAULEY§, DAVID PERKINSON¶, CARYN WERNER‖, AND QIAOYU YANG¶ Abstract. Let G be a connected, loopless multigraph. The sandpile group of G is a finite abelian group associated to G whose order is equal to the number of spanning trees in G. Holroyd et al. used a dynamical process on graphs called rotor-routing to define a simply transitive action of the sandpile group of G on its set of spanning trees. Their definition depends on two pieces of auxiliary data: a choice of a ribbon graph structure on G, and a choice of a root vertex. Chan, Church, and Grochow showed that if G is a planar ribbon graph, it has a canonical rotor-routing action associated to it; i.e., the rotor-routing action is actually independent of the choice of root vertex. It is well known that the spanning trees of a planar graph G are in canonical bijection with those of its planar dual G∗, and furthermore that the sandpile groups of G and G∗ are isomorphic. Thus, one can ask: are the two rotor-routing actions, of the sandpile group of G on its spanning trees, and of the sandpile group of G∗ on its spanning trees, compatible under plane duality? In this paper, we give an affirmative answer to this question, which had been conjectured by Baker. Let G be a connected, loopless multigraph. The sandpile group of G is a finite abelian group associated to G whose order is equal to the number of spanning trees in G. Holroyd et al. used a dynamical process on graphs called rotor-routing to define a simply transitive action of the sandpile group of G on its set of spanning trees. Their definition depends on two pieces of auxiliary data: a choice of a ribbon graph structure on G, and a choice of a root vertex. Chan, Church, and Grochow showed that if G is a planar ribbon graph, it has a canonical rotor-routing action associated to it; i.e., the rotor-routing action is actually independent of the choice of root vertex. It is well known that the spanning trees of a planar graph G are in canonical bijection with those of its planar dual G∗, and furthermore that the sandpile groups of G and G∗ are isomorphic. Thus, one can ask: are the two rotor-routing actions, of the sandpile group of G on its spanning trees, and of the sandpile group of G∗ on its spanning trees, compatible under plane duality? In this paper, we give an affirmative answer to this question, which had been conjectured by Baker.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملPacking Plane Spanning Double Stars into Complete Geometric Graphs
Consider the following problem: Given a complete geometric graph, how many plane spanning trees can be packed into its edge set? We investigate this question for plane spanning double stars instead of general spanning trees. We give a necessary, as well as a sufficient condition for the existence of packings with a given number of plane spanning double stars. We also construct complete geometri...
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کامل2 J ul 2 00 1 Orderly Spanning Trees with Applications ∗ Hsueh -
We introduce and study the orderly spanning trees of plane graphs. This algorithmic tool generalizes canonical orderings, which exist only for triconnected plane graphs. Although not every plane graph admits an orderly spanning tree, we provide an algorithm to compute an orderly pair for any connected planar graph G, consisting of a plane graph H of G, and an orderly spanning tree of H. We also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2015